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Abstract: Background: Genetic diversity provides the basic substrate for evolution. Genetic variation
consists of changes ranging from single base pairs (single-nucleotide polymorphisms, or SNPs) to
larger-scale structural variants, such as inversions, deletions, and duplications. SNPs have long been
used as the general currency for investigations into how genetic diversity fuels evolution. However,
structural variants can affect more base pairs in the genome than SNPs and can be responsible for
adaptive phenotypes due to their impact on linkage and recombination. In this study, we investigate
the first steps needed to explore the genetic basis of an economically important growth trait in the
marine teleost finfish Chrysophrys auratus using both SNP and structural variant data. Specifically,
we use feature selection methods in machine learning to explore the relative predictive power of
both types of genetic variants in explaining growth and discuss the feature selection results of the
evaluated methods. Methods: SNP and structural variant callers were used to generate catalogues
of variant data from 32 individual fish at ages 1 and 3 years. Three feature selection algorithms
(ReliefF, Chi-square, and a mutual-information-based method) were used to reduce the dataset by
selecting the most informative features. Following this selection process, the subset of variants
was used as features to classify fish into small, medium, or large size categories using KNN, naïve
Bayes, random forest, and logistic regression. The top-scoring features in each feature selection
method were subsequently mapped to annotated genomic regions in the zebrafish genome, and a
permutation test was conducted to see if the number of mapped regions was greater than when
random sampling was applied. Results: Without feature selection, the prediction accuracies ranged
from 0 to 0.5 for both structural variants and SNPs. Following feature selection, the prediction
accuracy increased only slightly to between 0 and 0.65 for structural variants and between 0 and
0.75 for SNPs. The highest prediction accuracy for the logistic regression was achieved for age 3 fish
using SNPs, although generally predictions for age 1 and 3 fish were very similar (ranging from
0–0.65 for both SNPs and structural variants). The Chi-square feature selection of SNP data was the
only method that had a significantly higher number of matches to annotated genomic regions of
zebrafish than would be explained by chance alone. Conclusions: Predicting a complex polygenic
trait such as growth using data collected from a low number of individuals remains challenging.
While we demonstrate that both SNPs and structural variants provide important information to
help understand the genetic basis of phenotypic traits such as fish growth, the full complexities that
exist within a genome cannot be easily captured by classical machine learning techniques. When
using high-dimensional data, feature selection shows some increase in the prediction accuracy of
classification models and provides the potential to identify unknown genomic correlates with growth.
Our results show that both SNPs and structural variants significantly impact growth, and we therefore
recommend that researchers interested in the genotype–phenotype map should strive to go beyond
SNPs and incorporate structural variants in their studies as well. We discuss how our machine
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learning models can be further expanded to serve as a test bed to inform evolutionary studies and
the applied management of species.

Keywords: structural variants; single-nucleotide polymorphisms; Chrysophrys auratus; growth;
feature selection; prediction

1. Introduction

Intraspecific genetic variation provides the substrate for hereditary evolutionary
change [1]. Genetic variation has most commonly been assessed using molecular markers
that quantify patterns defined by variation at one or a few base pairs, such as SNPs, AFLPs,
and microsatellites. However, it is becoming increasingly recognized that structural varia-
tion represents a significant, yet often poorly understood, source of genetic variation [2,3].
It has been shown that structural variants, which are defined as genomic variants between
individuals of the same species, can affect the position, order, direction, and composition
of one or multiple nucleotide sequences and include chromosomal insertions, deletions,
translocations, inversions, and duplications. It is only within the past 10–15 years, aided
by the development of genomic technologies such as high-throughput 2nd-generation
sequencing and later 3rd-generation sequencing, that the extent of intra- and interspecific
structural variation has been investigated in a number of non-model species [4–6].

Major advances in the field of computational genomics combined with increasingly
high-quality whole-genome data and assemblies for non-model species have led to a
re-evaluation of what constitutes important genomic variation between individuals. Re-
cent studies show that structural variation commonly affects a significant portion of the
genome [7,8] and, indeed, that structural variants can impact more base pairs in the genome
compared to SNPs e.g. [9]. Increasingly, studies also demonstrate that structural variants
are key modulators of phenotype with significant consequences for fitness [3,10]. For exam-
ple, in the African malaria vector Anopheles gambiae, inversion polymorphisms are linked to
desiccation resistance [11], and in the balsam poplar Populus balsamifera L., copy number
variations are linked with adaptive environmental variations linked to biotic and abiotic
stress responses [12]. In particular, chromosomal inversions are a common mechanism
by which multiple characters are inherited as a single locus, as is found in the common
fruitfly Drosophila melanogaster, where continental replicates of populations show that large
cosmopolitan inversions are involved in a parallel adaptive environmental responses [13].

Improving our understanding of the genomic variants that underpin complex phe-
notypic traits is particularly important for traits that have a polygenic architecture, which
is the case for the predominant number of quantitative traits [14]. As postulated by the
infinitesimal model, quantitative traits, such as growth, are typically caused by many genes
of small to moderate effect [15]. The vast majority of studies to date that have investigated
quantitative polygenic traits have used SNP variants, while larger variants in the genome
have rarely featured in such studies. This is in large part because polymorphisms in SNP
data can be easily quantified with high-throughput methods, while for structural variant
analyses, the sequencing approaches are not so cost-effective, and the associated bioin-
formatic pipelines are less developed. Compiling information about structural variation
across the genome is challenging, in part because of the large diversity of variants and the
size spectrum that they cover. For example, the detection of exact inversion breakpoints can
be challenging, as this would require a range of sequence read sizes (e.g., Illumina HiSeq
2500 with read sizes of 100–250 bp), including long reads (e.g., PacBio RS II sequencing
with read sizes of about 10,000–15,000 base pairs), to cover the entire spectrum of inversion
polymorphisms in many species.

Here, we investigate the roles of SNPs and structural variant polymorphisms in
explaining the quantitative trait growth in the marine teleost species the Australasian
snapper, Chrysophrys auratus (hereafter referred to as snapper). Our approach outlines an



Genes 2022, 13, 1129 3 of 18

initial framework of how such an exploration could be achieved to highlight the challenges
and opportunities and ultimately to guide future research. The study species for this work is
a species of significant commercial, recreational, and cultural significance in New Zealand,
where it is referred to as tāmure by Māori. Plant and Food Research has a long-term research
programme on this species to develop it for aquaculture using selective breeding. The key
economic trait that is selected for is growth, to yield an elite strain with superior growth
qualities, something that has been achieved for its sister species the red sea bream, Pagrus
major, and the related gilthead sea bream, Sparus auratus [16]. Until now, genomic selection
for growth has been based on SNP information alone. However, a recent study on this
species demonstrated that the structural variation in deletions, duplications, and inversions
contributes to as much as three times as many base pair variants in the genome when
compared to SNPs [9]. To quantify the relative roles of SNPs versus structural genomic
variation in predicting growth (small, medium, or large size categories), we (1) compared
counts of SNPs and structural variants occurring in different window sizes and examined
their ability to correctly assign a fish to a correct size class, (2) compared the size assignment
accuracy to a model that included a feature-selection step to filter the most informative data,
and (3) discuss the relative roles of SNPs and structural variants in determining growth in
this species, the general implications of these findings to other species, and how our initial
framework could be expanded in the future.

2. Materials and Methods

We used 32 fish for which we had individual whole-genome Novaseq data (150 bp
paired-end, coverage 15×) and length data at age 1 and 3. The methods for the DNA
extraction and processing from this cohort have been published elsewhere [9,17,18], but we
briefly summarise the salient points below.

2.1. Study Population and Phenotypic Growth Measurements

Snapper cohorts from a three-generation pedigree were reared in tanks at the Nelson
Finfish Facility with consistent feeding, light, water flow, aeration, and tank design [17,18].
For growth measurements, the fork length was measured as the distance from the nose to
the fork of the tail. These measurements were made when the fish were between 436 and
487 days (“year 1”) and again when they were between 1045 and 1131 days (“year 3”). Due
to mortality, not every fish was measured during year 1 and year 3, and the final dataset
consisted of 32 fish for which all data were complete.

2.2. Genomic Data Filtering and Mapping

NovaSeq600 S2 150 bp paired-end read data at an average coverage of 15× were
generated for 80 snappers, including the 32 snappers used in this study (see Figure 1 for
an overview of the genomic data preparation processes). The raw data of all 80 snappers
were assessed for quality using FASTQC v0.11.7 [19], and reads were trimmed using
Trimmomatic v0.36 [20], removing the first nine bases, trailing bases if their quality was less
than 10, adapter sequences, and homo-polymer sequences. Reads with less than 75 bases
after clipping were also removed. Trimmed reads were aligned to the snapper reference
genome [9] using BWA v0.7.17 [21]. Duplicate reads were removed using Picard tools
v2.18.7 [22]. GATK v3.8.0 [23], RealignerTargetCreator, and IndelRealigner were used to
realign reads around indels. Bam files were filtered for reads with a minimum mapping
quality (–min-MQ) of 20 using samtools.
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Figure 1. Overview of the processing of the genomic data.

Variant Calling

Small variants were called on all 80 snapper samples as a single cohort using Free-
Bayes v1.1.0 [24] with the following parameters: –report-genotype-likelihood-max, –min-
base-quality 10, –min-mapping-quality 20, –genotype-qualities, –use-mapping-quality,
–no-mnps, –no-complex, –max-complex-gap 50, –min-alternate-fraction 0.1, –min-repeat-
entropy 1, –no-partial-observations–min-coverage 10, –max-coverage 500, and –pooled-
continuous. Structural variants were called on individual fish using Parliament2 v2.0 [25],
which consists of an ensemble of callers, including Breakdancer v1.4.3 [26], BreakSeq2
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v2.2 [27], CNVnator v0.3.3 [28], Delly v0.7.2 [29], Lumpy v0.2.13 [30], and Manta v1.4.0 [31].
For variant frequencies and densities, structural variant call-sets of the full cohort of 80 fish
and the 32 fish of the training and test sets were merged using SURVIVOR v1.0.3 [32].

To easily compare between single-nucleotide variant and structural variant data, SNP
genotypes were summarised into counts occurring within 10 and 50 kb windows for each
of the following genotypes: ‘.’, ‘0/0’, ‘0/1’, ‘1/1’, ‘0/2’, ‘1/2’, and ‘2/2’. Only variants with
one or two alternative alleles were considered; variants with more than two alternative
alleles were rare and were excluded from the analysis. For the development of features of
structural variants, deletions, duplications, insertions, and inversions between 5 bp and
1 kb were counted within a 10 kb or a 50 kb window size.

2.3. Model Construction, Testing, and Prediction
2.3.1. Feature Selection Methods

Genotype data generated from whole-genome sequences typically contain very large
numbers of variants and in turn, for use in machine learning, very large numbers of features
(in this case, counts per genomic window). To reduce the features to those that contribute
most to the prediction of size classes, we examined three feature selection methods, ReliefF,
Chi-square, and mutual information methods. The ReliefF algorithm performs feature
selection by scoring features based on nearest neighbour instance pairs, then selecting
the top-scored features. If a feature has different values in the nearest neighbour pair but
their classes (in this case, size classes) are the same, the score of this feature decreases.
Conversely, if the feature values are different and their classes are different as well, then
the score increases [33]. ReliefF is commonly used with high-dimensional genomic data.
Furthermore, ReliefF implicitly considers interactions between features when performing
feature scoring, which is very suitable for polygenic traits such as growth. We used the
tuned ReliefF (TuRf) algorithm implemented in the scikit-rebate package [34], which uses
a multi-round process where it eliminates the lowest-scored features iteratively until a
predefined number of scores remain [34,35].

The Chi-square feature selection algorithm generates an estimated normal distribution
of expected values of the different size classes and then tests the dependency between a
feature and the class labels by placing it within this distribution. High dependency yields a
high score, with the feature assessed as more useful [36]. Chi-square is a very commonly
used statistical feature selector that usually produces relatively robust results. However,
Chi-square does not consider interactions between features and might not work well for
high-dimensional data. We used the SelectKBest implementation within scikit-learn [37,38].

The mutual-information-based feature selection method measures the shared infor-
mation between a feature and the class labels or between two features. It achieves feature
selection by removing features that have low mutual information with the class labels but
high mutual information with other features and retaining those that have high mutual
information with the class labels [39]. Mutual information was used because it is a com-
monly used method in genomics studies such as microarray studies [40] or gene expression
studies [41], as those studies contain data of a high-dimensional feature space similar to
this work. We used the mutual_info_classif implementation in scikit-learn [37,38].

2.3.2. Classification Algorithms

We tested the prediction accuracy following feature selection on four common ma-
chine learning algorithms: random forest, Gaussian naïve Bayes, logistic regression,
and K-neighbours. These were all performed with the default settings of scikit-learn
v0.24.0 [37,38].

The random forest (RF) classification algorithm constructs an ensemble classifier
containing a number of decision trees during the training process, each of which is a
predictive model. RF combines the prediction of all the decision trees to produce a class
label for each instance [42]. Logistic regression builds a function to map the input features
to the probabilities of an instance belonging to a certain class [43]. K-nearest-neighbour
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(KNN), which is an instance-based learning (often called memory-based learning) method
for classification using the distances between an instance (in the test/target set) and all the
instances in the training set. The nearest neighbours vote for the class label of the target
instance, and the Euclidian distance is commonly used as the distance measure in KNN [44].
Gaussian naïve Bayes (NB) is based on probability theory, which assumes features are
conditionally independent of each other. NB calculates the (conditional) probability of each
feature value for a class based on the training data and then predicts the probability of an
unseen test instance belonging to each class [45].

2.3.3. Model Building and Testing

Because the number of fish in the study was small, predicting a continuous variable
(i.e., fish length) from count data (counts of the number of a type of variant in either a
10 kb or 50 kb window) was deemed impractical. Instead, we converted the continuous
size measurement of length from tip to fork into three size classes (“small”, “medium”,
and “large”) by separating the size measurements into 33.33% quantiles (see Figure 2).
We also split the data into two datasets for the year 1 and year 3 age classes to enable a
comparison of the prediction accuracies of the same fish at different time points.

Figure 2. Density plot of the distribution of growth of 1- and 3-year-old snappers. The bins small,
medium, and large are coloured red, green, and blue for year 1, respectively, and for year 3 they are
orange, purple, and black, respectively.

For both the year 1 and year 3 datasets, we randomly split the data into 24 instances in
the training set and 8 instances in the test set (Table 1). This distribution was maintained in
the training and test sets for both the feature selection and the classification methods to
prevent leakage.

Table 1. The number of fish in the small, medium, and large categories for the year 1 and year 3 fish
in the training and test datasets.

Year 1 Fish Year 3 Fish

Training Dataset Test Dataset Training Dataset Test Dataset

Small 10 1 9 0
Medium 4 6 4 2

Large 10 1 10 6

To compare the feature selection methods, we extracted the top features selected by
TuRF, Chi-square, or mutual information. We then examined their subsequent predic-
tion accuracy using the random forest, Gaussian naïve Bayes, logistic regression, and K-
neighbours classification methods. We investigated how the feature number influences
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the prediction accuracy of growth by extracting the top 25, 50, 200, 250, and 500 ranked
features and compared this to using all features (i.e., no feature selection).

2.4. Result Annotation

To ask whether features were more likely to be associated with the presence of genes
associated with growth within genomic windows, we extracted gene annotations from a
gene annotation file described previously [46], and respective GO terms were extracted
from a previously generated table [47]. The top 200 features were queried against the
gene annotation file, and the number of hits was counted. We also tested the hypothesis
that the features might be more likely to be associated with growth or development by
counting any hits that had the terms “Growth” or “Development” in the cellular function
annotation. We tested whether this was more likely than would be found through chance
by using a permutation test that randomly sampled 200 features from the full feature set
1000 times. We counted the number of total hits or hits to “growth” or “development” in
cellular function that the sampled features had to the annotation set and calculated the
density distribution, including 99% confidence intervals.

Circos plots were generated using the R package circlize v0.4.1 [48] using bed files of
variants merged from the 32 samples under study, which were filtered between 5 bp and
10 kb.

3. Results
3.1. Genetic Variant Catalogue

A total of 21,573,217 small variants were called from all 80 snapper samples. The con-
version of variants into features (counts of genotype categories within windows) resulted in
a total of 102,648 features of 50 kb windows and 513,590 features of 10 kb windows. For the
structural variants, there were 58,665 features of 50 kb windows and 293,493 features
of 10 kb windows. When the structural variants between 5 bp and 50 kb were merged
across the full cohort of 80 individuals, 10,789 duplications, 1092 inversions, 2225 insertions,
and 78,719 deletions were counted, of which 6926 duplications, 825 inversions, 1731 insertions,
and 63,017 deletions were counted within the 32 individuals under study for growth.
Once filtered for variants between 5 bp and 1 kb, 1189 duplications, 294 inversions,
1731 insertions, and 43,946 deletions were counted. There were a total of 1,158,928 dele-
tions, 511,009 insertions, 8204 inversions, and 33,290 duplications recorded. Figure 3a
provides the densities of the structural variants between 5 bp and 1 kb alongside those of
the 200 regions with the highest growth prediction with a 10 and 50 kilo base pair window
on SNPs and structural variants. Figure 3b provides an overview of the locations and sizes
of structural variants between 5 bp and 1 kb across the genome.
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Figure 3. Circos plots of density (proportion of 100 kb genomic windows covered by variant class,
(a) and locations and sizes (in base pairs, (b)) of structural variants called by Parliament2 within the
32 F2 samples and merged by SURVIVOR. In addition, the density plot shows the top 25 growth
areas from the relief feature selection of SNPs and structural variants. In legends, dels = deletions,
invs = inversions, ins = insertions, and dups = duplications.
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3.2. Model Building and Testing

Using no feature selection, the prediction accuracies to classify fish into the “small”,
“medium” or “large” categories were generally low (e.g., Figure 4, “All” panel). All pre-
diction probabilities were 50% or lower. The highest prediction probability was for the
random forest and KNN classification methods (50% for each) for SNPs and structural
variants, respectively, for 10 kb windows in 3-year-old fish.

Figure 4. Prediction accuracy (%) for the different feature selection sets of classification algorithm
using a Chi-square feature selection method.

Chi-square feature selection improved the prediction accuracies somewhat (Figure 4).
The highest prediction accuracies (62.5%) were for the random forest algorithm in the top
25 SNPs in 10 kb windows using 1-year-old fish, the KNN classification on the top 50 SNPs
in 10 kb windows in 1-year-old fish, naïve Bayes for the top 25 SNPs in fish at the age
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of 3, and random forest for the top 250 structural variants in the year 1 fish. All other
combinations of features, classification algorithms, window sizes, and ages of fish had
similar prediction accuracies to the no feature selection results.

The mutual information feature selection had top prediction accuracies of 62.5% using
the KNN classification methods for 500 SNPs from 50 kb windows in year 3, 250 structural
variants from 10 kb windows in year 1, and 200 structural variants from 50 kb windows in
year 3 (Figure 5). In addition, naïve Bayes resulting in 62.5% prediction accuracies using
the 25 top-scoring SNPs generated from 50 kb windows for year 3 fish. All other prediction
accuracies were 50% or less for all other combinations of classification method, window
size, fish age class, and feature number.

Figure 5. Prediction accuracy (%) for the different feature selection sets of classification algorithms
using a mutual Information feature selection method.

ReliefF feature selection had prediction accuracies of 75% for logistic regression on
SNPs generated from 10 kb windows (Figure 6). Logistic regression also generated pre-
diction accuracies of 62.5% using the top 250 SNPs and 25 structural variants using 10 kb
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windows on year 3 fish. Other combinations of methods that yielded 62.5% prediction
accuracies included naïve Bayes using the top 50 structural variants called from 50 kb
windows on year 1 fish, random forest using the top 200 structural variants called from
50 kb windows on year 3 fish, and KNN using the top 200 structural variants from 50 kb
windows in year 3 fish.

Figure 6. Prediction accuracy (%) for the different feature selection sets of classification algorithms
using a ReliefF feature selection method.

3.3. Annotation of Key Results

Most features in the top 200 features were not significantly more likely to have a
positive hit to the annotated zebrafish genome than would be found by chance alone (i.e.,
the counts fell below the 99% confidence interval in all but one case). The exception for this
was for Chi-square feature selection using SNPs at 50 kb for years 1 and 3 and for SNPs
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called over 10 kb windows for year 3 fish (Figure 7). When this was filtered further to only
include hits that related to ‘Growth’ or ‘Development’ in cellular function, there were no
counts that were greater than the 95% or 99% confidence intervals (Figure 8).

Figure 7. Permutation test of top 200 features compared to sampling 200 features randomly across
the genomic windows. Solid lines are the number of positive hits to a genomic annotation of
zebrafish (black is ReliefF feature selection, blue is mutual information feature selection, and orange
is Chi-square feature selection). Dotted lines are the 99% confidence intervals for the 1000 sets of
200 randomly sampled features.
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Figure 8. Permutation test of top 200 features compared to sampling 200 features randomly across the
genomic windows. Solid lines are the number of positive hits to a genomic annotation of zebrafish that
contain the words “Growth” or “Development” in the cellular function column (black is relief feature
selection, blue is mutual information feature selection, and orange is Chi-square feature selection).
Dotted lines are the 99% confidence intervals for the 1000 sets of 200 randomly sampled features.

4. Discussion

How different types of genetic variation influence the phenotype is of key biological
importance. The ease with which SNP data can be generated has led to significant progress
in our understanding of how phenotypic trait variation is modulated by single changes in
the base pair composition of the genome e.g. [47,49]. However, while structural variants
impact large portions of the genome [2], there has been considerably less progress on how
these underpin complex phenotypes. There is thus an urgent need to go beyond SNP
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variants if we want to better understand how the full extent of genomic variation impacts
the phenotype and, ultimately, the eco-evolutionary trajectories of species [50–52].

Here, we explore the first steps towards understanding the predictive power of both
SNPs and structural variant polymorphisms in explaining a complex quantitative growth
trait by applying feature selection methods and machine learning models to our dataset. For
our work, we chose the non-model species snapper (Chrysophrys auratus) because previous
research on this species has generated significant genomic resources and an understanding
of growth that we could leverage [17,18,47]. As such, our study explores some fundamental
steps towards a fuller understanding of the genetic basis of growth and outlines some
general considerations for future studies. Growth in vertebrates is a known polygenic trait
with a complex genetic basis. Finding genomic regions associated with growth in snapper
has been a significant endeavour until now, and detected regions have effect sizes of a
few percent, something that is typical for highly polygenic traits [53]. Genomic growth
regions are complex and often include regions that are inherited together, and epistasis
and pleiotropy are common and epigenetic effects are being shown to be important in the
regulation of gene activity. Thus, it is not just the genomic features that provide prediction
signals to predict traits such as growth. It is also the environment of the fish and potentially
their parents as well as the underlying architecture in the genome that are also potentially
important features. We generated catalogues for SNPs and structural variants for 32 fish
(2/3 were used as the training set, and 1/3 were used as the test set) to test different feature
selection methods and machine learning models in predicting growth. To our knowledge,
this is the first time that a study has explored the relative predictive power of these types of
variants with these methods to explain a complex phenotypic trait such as growth.

Overall, our approach to apply machine learning algorithms to genetic data, and to an
extent the usual dataset of SNPs to include structural variants, has shown some promise,
and we will outline the most important findings here. First, adding feature selection
methods to retain the best-performing predictors for growth significantly improved model
prediction accuracy, as predicted by previous theoretical and empirical work [54]. Without
applying feature selection, the prediction accuracies were generally low (50% or less),
indicating that this step is crucial to retain the genetic features needed by our model to make
accurate predictions while discarding redundant features to reduce data dimensionality,
remove noisy and irrelevant data, and thus preserve the most useful signals from the
dataset. We also found that the prediction accuracy was slightly higher in year 3 than
in year 1, regardless of the method applied (Figures 4–6). This was possibly due to the
more stochastic nature of growth during the first year of fish (e.g., stronger environmental
impacts on larval and juvenile fish), while growth differences in older fish have a greater
potential to reflect true accumulated genetic differences.

Feature selection is a common method for high-dimensional genetic data [34,55],
and other studies have found that ReliefF can perform quite well for genomic data, as an
epistatic interaction can be included [56]. It is possible the poor performance of ReliefF
in this work was due to the method of scoring of the SNP data. Rather than the presence
or absence of an SNP, as is often scored, in this case we counted the numbers of SNPs for
each genotype class across a window so that we could directly compare them with the
counts of structural variants. Thus, we may have lost some of the associations between
windowed regions that could occur. It was interesting, however, that the Chi-square feature
selection did result in significantly more features that mapped to an annotated zebrafish
genome for SNPs, particularly those scored across a 50 kb window in year 3 fish, with
the number of hits to annotated regions falling well outside the 99% confidence intervals.
However, it is likely that many of the other features do have some association with growth
but that these have not been documented as such. Snapper is a non-model species, and
relating regions of growth in this species to the more distantly related but well-annotated
zebrafish genomes will always be an abstraction. Features that do map to the annotation
may provide hypotheses for candidate growth regions of interest and as such could provide
candidate regions for future exploration. These features might either be in gene regions
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associated with metabolic functions or they could be in linkage disequilibrium with coding
regions, meaning some of the association might be correlative but not causal.

Second, in some instances we were able to achieve prediction accuracies of 62% or
higher for both the SNP and structural variant data. Thus, it does suggest that structural
variants do provide some useful information that associate with the complex growth trait
in this snapper population. This has not always been found to be the case. For example, in
a study of 35,000 Holstein and Jersey cattle (Bos taurus), only a small proportion of total
phenotypic variance was accounted for by structural variants [57]. It should be noted,
however, that in this case structural variants were imputed from SNP data, which would
have likely limited the range of detection and thus underestimated the likely predictive
power. However, evidence is accumulating from various studies with wide taxonomic
spread that structural variants are significant determinants of phenotypic traits and are
associated with their regulation. A study on 1141 American lobsters (Homarus americanus)
from 21 sampling sites revealed that copy number variants accounted for a higher genetic
differentiation than SNP markers and were significantly associated with the annual variance
in sea surface temperature, providing a strong empirical case that structural variants
contribute to local adaptation [58]. Likewise, in tomato (Solanum lycopersicum), structural
variants detected through long-read nanopore sequencing in 100 individual genomes were
shown to be responsible for not just the difference in allele dosage but also a range of
expression of phenotypes [59]. In some cases, just a few major structural variants are major
determinants of adaptive traits and fitness, as seen in honeybees (Apis mellifera), where
chromosomal inversions have been linked to local adaption [60], or sunflowers where major
haploblocks are responsible for ecotypic differentiation [61]. We therefore think that it is
likely that further examination of structural variants in species with diverse ecologies will
document additional evidence in support for their significant contribution to phenotypic
traits and fitness. This is particularly likely for species such as snapper, where the bp
affected by structural variants outnumber those impacted by SNPs threefold and where
many of these variants intersect with genes [46].

Third, in addition to the architectural complexity of genomic data, the cost and time
investment for genome-wide scans in non-model species such as snapper commonly results
in a low n (sample size), high p (parameter number) problem. This problem is described
by the fact that it is generally more cost and time effective to screen for a large number
of variants within an individual than it is to screen large numbers of individuals [62] as
is common in the fields of, e.g., neuroimaging, genomics, motion tracking, eye tracking,
and many other technology-based data collection methods that have led to a torrent of
high-dimensional datasets. This is a well-known area where classical machine learning
algorithms do not perform well [63,64]. However, despite small sample sizes being common
and the fact that limited data are problematic for pattern recognition, only a limited number
of papers have systematically investigated how the machine learning validation process
should be designed to help avoid optimistic performance estimates. In our situation, we
had 24 fish in the training set and predicted on 8 fish in the test set, and low numbers
prevented the more traditional n-fold cross-validation procedures that precede testing.
Indeed, it is also possible that our test and training sets did indeed have some leakage:
related individuals were necessarily in both sets, which would have overinflated the test
accuracies. Some degree of relatedness is also a typical find when screening individuals
from the same sampling populations, particularly when movement dynamics are low.
In addition, we have only screened a few of the more common machine learning algorithms.
Undoubtedly, other untried algorithms will be found that perform better. For example,
neural networks and other deep learning methods have been proposed as useful algorithms
for genomic data, especially those with small sample sizes [64,65]. In addition, it may
be that combining SNPs and structural variant datasets can provide a more complete
view of the complexity of the genome, potentially explaining growth variation in a more
complete manner.
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In conclusion, our work outlines a promising approach to finding genetic variants
associated with complex traits and showcases how one can go beyond SNP data to also
account for structural variant data. While our results indicate that SNPs can account for
some of the variation in phenotypic traits, our results also highlight that structural variants
should not be overlooked and that they carry significant additional phenotype information.
Therefore, we recommend that researchers interested in the genotype–phenotype map
should strive to go beyond SNPs in their work to capture the underpinnings of quantitative
traits, such as growth. This will allow researchers to harness more of the available catalogue
of genetic variants in the genome that are ultimately impacting the phenotype. In addition,
future efforts need to increase the sample size of fish to better account for the genetic
variation underlying this complex trait and to minimise to some extent the large n, small p
issue in many biological datasets used for machine learning approaches.
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